КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. АЛЬ-ФАРАБИ

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ДЛЯ ПОСТУПАЮЩИХ ДОКТОРАНТУРУ РЬО ПО ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ «8D051 - БИОТЕХНОЛОГИЯ ОКРУЖАЮЩЕЙ СРЕДЫ »

АЛМАТЫ

Программа составлена в соответствии с Государственным общеобразовательным стандартом по специальности «8D051 - Биотехнология окружающей среды». Программу составили: д.б.н., профессор профессора Заядан Б.К., к.б.н., доцент Садвакасова А.К., к.б.н., доцент Кирбаева Д.К.

	а на заседании кафедры биотехнологии
Протокол №с	oτ2020 г.
Зав.кафедрой	Кистаубаева А.С.
Протокол №от	методбюро факультета 2020 г.
Председатель методбюр	оо О.Ю. Юрикова
Утверждена на заседан Протокол № от	ии Ученого совета 2020 г.
Председатель Ученого декан факультета	·
Ученый секретарь	М.О. Бауенова

СОДЕРЖАНИЕ

1. Цели и задачи вступительного экзамена по специальности «8D051 Биотехнология окружающей среды».

Целью вступительного экзамена для поступающих в докторантуру по специальности «8D051 - Биотехнология окружающей среды» является выявление той суммы знаний, которую он приобрели, обучаясь в магистратуре. А также оценить соответствие универсальных компетенций абитуриента в докторантуру, необходимые для успешного освоения специальных компетенций, формируемых в процессе обучения по докторской образовательной программе. Задача экзамена состоит в том, чтобы оценить способность и готовность будущих докторантов осуществлять поиск, отбирать, синтезировать и конкретизировать информацию; оценить осознание поступающими предмета обучения в докторской образовательной программе; оценить готовность поступающего использовать современные информационные ресурсы в процессе обучения, оценить способность сформулировать и решать современные научные и практические проблемы в науке и на производстве, преподавать в вузах, успешно осуществлять исследовательскую и управленческую деятельность в различных биотехнологических производствах и организациях.

Форма экзамена – письменно.

2. Требования к уровню подготовки лиц, поступающих в докторантуру PhD по специальности «8D051 - Биотехнология окружающей среды».

Предшествующий минимальный уровень образования лиц, желающих освоить образовательные программы докторантуры — магистратура. Поступающий в докторантуру должен обладать общепрофессиональными компетенциями, соответствующими уровню подготовки магистров, уметь формулировать и изучать новые проблемы из различных областей современной биотехнологии; уметь организовать на научной основе трудовую деятельность, использовать полученные знания в лабораторных и производственных условиях.

3. Пререквизиты образовательной программы

«Экологическая биотехнология», «Метаболизм ксенобиотиков», «Современные методы в биотехнологии», «Фотобиотехнология», «Генетика с основами генной инженерии».

4. Перечень экзаменационных тем

Биологические методы очистки стоков и утилизации твердых отходов. Биометаногенез

микробиология, биохимия и параметры процесса. Требования к перерабатываемому сырью. Эффективность биометаногенеза и степень конверсии массы отходов в продукт.

Состав и калорийность биогаза. Ликвидация и переработка отходов свалок. Обезвреживание токсических продуктов. Ликвидация и переработка твердых бытовых отходов. Биометаногенез и компостирование — микробиология, биохимия и параметры процесса. Обезвреживание токсических продуктов.

Трансгенные микроорганизмы – эффективные биодеструкторы ксенобиотиков.

Методы получения рекомбинантных ДНК. Рекомбинантные микроорганизмы - деструкторы

пестицидов, нефтепродуктов и других поллютантов. Трансгенные микроорганизмы – эффективные биодеструкторы ксенобиотиков.

Биоремедиация. Критерии проектирования биотехнологических процессов очистки. Биопрепараты, используемые при биоремедиации окружающей среды. Процессы очистки

сточных вод. Качество воды и методы очистки. Биоремедиация окружающей среды: биодеградация тяжелых металлов, очистка от нефти и нефтепродуктов, биоремедиация атмосферы. Принципы и подходы для очистки газовоздушных выбросов. Типы биокатализаторов и аппаратов для данных процессов. Характеристика различных биопрепаратов используемых в очистке загрязненной воды и почв. Промышленные аппараты для сбраживания стоков. Септитенки. Анаэробный биофильтр. Активный ил составляющие и химизм действия. Характеристики биоплёнки и активного ила.

Технологическая биоэнергетика.

Технологическая биоэнергетика и безопасные способы воспроизводства и преобразования энергии. Метанотенки и биометаногенез как процесс ликвидации отходов и экологический метод получения энергоносителей. Типы и устройство метанотенков.

Биотехнология и экологизация сельскохозяйственных технологий.

Эколого-биотехнологические альтернативы в сельском хозяйстве. Биоудоборения: характеристика, принципы получения и применения. Биогербициды: принципы получения и применения.

Разрушаемые биополимеры. Разрушаемые биополимеры – экологическая альтернатива синтетическим неразрушаемым пластикам. Современные масштабы производства и сферы применения полигидроксиалканоатов.

Биомониторинг загрязнения водных экосистем. Особенность биоиндикации на клеточном, организменном, популяционном и ценотическом уровнях. Специфические и неспецифические индикаторные реакции водных животных и растений. Биомониторинг и биотестирование окружающей среды. Методология комплексного биомониторинга.

Классификация токсикантов и отравлений. Принципы классификации ядов: общие и специальные. Специфическое и неспецифическое действие вредных веществ. Основные виды специфического действия. Понятие о рецепторе токсичности. Теория рецепторов токсичности. Характеристика связи яда с рецептором. Влияние типа связи «яд-рецептор» на проявление токсичности.

Определение токсикологических характеристик. Порядок гигиенического нормирования химических веществ. Этапы определения токсикологических характеристик. Лимитирующий признак установления. Временные токсикологические характеристики. Ускоренное установление санитарных стандартов химических веществ. Расчетные методы определения токсикологических веществ.

Воздействие токсикантов на биологический объект. Комбинированное воздействие на биологический объект. Аддитивность, синергизм и антагонизм при совместном действии вредных факторов окружающей среды. Особенности повторного воздействия вредных веществ на биологический объект. Кумуляция ядов (материальная и функциональная). Толерантность. Сенсибилизация.

Понятие биотрансформации ксенобиотиков. Концепция I и II фазы метаболизма ксенобиотиков. Первая фаза метаболизма. Механизмы I фазы метаболизма ксенобиотиков: окислительно-восстановительные превращения, гидролиз. Ферменты, активизирующие процессы I фазы метаболизма ксенобиотиков. Вторая фаза метаболизма. Механизмы II фазы метаболизма ксенобиотиков: конъюгация (ацетилирование, конъюгация с глюкуроновой кислотой, с сульфатами, с аминокислотами). Понятие о летальном синтезе.

Воздействие веществ на популяции и экосистемы. Популяции и экосистемы, как объекты воздействия вредных веществ. Сообщества, экосистемы как объекты воздействия вредных веществ. Изменение видового разнообразия и численности видов. Устойчивость и трансформация экосистем. Специфика метаболизма химических веществ в экосистемах, транспорт, биодеградация и биоконцентрирование. Предельно-допустимая экологическая нагрузка. Особенности токсикологического нормирования в экосистемах.

Объекты экологической биотехнологии. Промышленноценные микроорганизмы – бактерии, актиномицеты, дрожжи, микроводоросли.

Хранение промышленных штаммов микроорганизмов. Способы длительного сохранения и защиты от поражения фагами промышленных штаммов микроорганизмов.

Культивирование гетеротрофных и фототрофных микроорганизмов. Закономерности их роста и культивирования. Оптимизация процессов культивирования микроорганизмов.

Особенности метаболизма микроорганизмов. Особенности энергетического метаболизма у прокариот. Пути решения энергетических проблем хемоорганотрофами и хемолитотрофами. Особенности бактериального фотосинтеза.

Контроль биотехнологического и микробиологического производства. Микробызагрязнители биотехнологических производств и борьба с ними. Производственный и санитарно-микробиологический контроль производств.

Микробная переработка растительных отходов. Микробиологические процессы переработки растительного сырья.

Микробиологические основы переработки отходов животноводства.

Производство белковых препаратов. Получение белков из дрожжей. Получение белков из фототрофных микроорганизмов.

Получение биологические активных добавок (БАД). Нутрицевтики, парафармацевтики, пребиотик, их функциональная роль. Классификация БАД.

Биоэнергетика. Биометаногез. Получение спирта. Биодизель. Получение водорода.

Инженерная энзимология. Иммобилизованные ферменты. применении иммобилизованных ферментов в биотехнологии.

Усовершенствование и ускорение селекционного процесса методами хромосомной инженерии и биотехнологии.

Использование культуры клеток и тканей. Гаплоидная технология на основе андрогенеза. Сочетание методов хромосомной инженерии и культуры пыльников в селекции растений

Химический и радиационный мутагенез как метод повышения разнообразия исходного материала для гибридизации.

Методы цитогенетического анализа мутантов пшеницы. Типы внутрихромосомных и межхромосомных мутаций: гетерозиготные транслокации, инверсии и дупликации, гетероморфные биваленты и их последствия.

Основные принципы генной инженерии. Реализация генетической информации.

Определение предмета генной инженерии, ее место в развитии молекулярной генетики и биологии в целом. Введение понятия рекомбинантной ДНК. Основные предпосылки возникновения генной инженерии.

Генетические элементы, регулирующие экспрессию генов прокариот.

Представления о регуляции экспрессии генов на уровнях их транскрипции, а также трансляции соответствующих им матричных (м)РНК. Бактериальные гены с родственными функциями организована в опероны, теория Ж. Моно и Ф. Жакоба на примере лактозного (lac) оперона.

Методы создания рекомбинантных молекул ДНК. Ферменты обмена нуклеиновых кислот, используемые в генной инженерии. Характеристика ферментов рестрикции, их классификация. Изошизомеры. Рестрикционные карты и рестрикционные фрагменты.

Методы конструирования рекомбинантной молекулы ДНК: получение кДНК гена, рестрикция, лигирование и методы переноса генов в клетки различных организмов.

Методы клонирования рекомбинантных молекул ДНК.

Общая характеристика бактериальных плазмид как автономно реплицирующихся минихромосом. Эписомы, нетрансмиссибельные плазмиды.

Методы выделения клонированных генов.

Селекция клонов бактерий, получивших рекомбинантные плазмиды, с использованием генов, определяющих устойчивость к антибиотикам (инактивация в результате вставки). Блоттинг по Саузерну и "северный блотинг" (Southern and northern blotting). Скрининг библиотек генов с помощью олигонуклеотидных зондов. Энзиматические, иммунологические и иммуноферментные (ELISA) методы идентификации белковых

продуктов генов и собственно нуклеиновых кислот (дигоксигенин, тройная спираль нуклеиновых кислот). Использование метода полимеразной цепной реакции (ПЦР) для идентификации, амплификации и выделения специфических участков ДНК.

Методы изучения мембранных структур в биотехнологии. Разделение субклеточных компонентов. Идентификация клеточных компонентов и критерии их очистки.

Методы, используемые для выделения и изучения липидов мембранных структур. Разделение и анализ липидных компонентов мембран. Идентификация липидных компонентов мембран.

Методы выделения и идентификации жирных кислот. Типы хроматографии, используемые для количественного определения жирных кислот. Их преимущества и недостатки.

Принципы выделения белков из биологических объектов. Основные критерии чистоты белковых препаратов. Качественные и количественные методы определения белков.

Методы выделения и анализа нуклеиновых кислот. Основные критерии их чистоты. Количественное определение нуклеиновых кислот. Выбор методов для анализа нуклеиновых кислот.

Современные методы секвенирования нуклеиновых кислот. Этапы и виды методов секвенирования нуклеиновых кислот. Принципы радиоавтографии.

Принцип полимеразных цепных реакций (ПЦР). Принцип метода, этапы, компоненты реакции. Необходимая аппаратура для ПЦР.

Разновидности полимеразных цепных реакций (ПЦР). Использование полимеразных цепных реакций для анализа первичной структуры нуклеиновых кислот. Применение ППР.

Методы генетической инженерии. Понятие рекомбинантный структуры. Механизм создания рекомбинантной ДНК.

Практическое применение генетической инженерии. Получение трансгенных растений и животных.

5. Список рекомендуемой литературы

Основная литература:

- 1. Кузнецов, А. Е. Научные основы экобиотехнологии / А. Н. Кузнецов, Н. Б. Градова. М. : Мир, 2006. 504 с.
- 2. Заядан Б.К. Экологическая биотехнология фототрофных микроорганизмов Монография. Алматы, «Арыс», 2011 г. С.368
- 3. Заядан Б.К. Фототрофты микроорганизмдер Биотехнологиясы. Монография.-Павлодар,2010 г. С.421.
- 4. Каплин, В. Г. Основы экотокискологии / В. Г. Каплин. М.: Колос, 2007. 231 с.
- 5. Кузнецов, А. Е. Прикладная экобиотехнология : В 2 т. : учеб. пособие. Т.1. / А. Е. Кузнецов, Н. Б. Градова, С. В. Лушников. 2-е изд., М. : БИНОМ. Лаборатория знаний, 2012.-629 с.
- 6. Прикладная экобиотехнология. В 2 т. : учеб. пособие. Т.2 / А. Е. Кузнецов, Н. Б. Градова, С. В. Лушников и др. М. : БИНОМ. Лаборатория знаний, 2010. 488 с.

- 7. Волова, Т. Г. Биоразрушаемые полимеры: синтез, свойства, применение: монография / Волова Т. Г. и Шишацкая Е. И; под ред. Э.Дж. Сински. Красноярск : Красноярский писатель, 2011.
- 8. Волова, Т. Г. Биотехнология : учебное пособие / Т. Г. Волова; отв. ред. И. И. Гительзон. 2-е изд., перераб. Красноярск : КрасГУ, 2002. 266 с.
- 9. Биологические средства защиты растений. Технологии их изготовления и применения. / Под ред. В. А. Павлюшина, К.Е. Воронина. СПб.: ВИЗР, 2005. 360 с.
- 10. Введение в биотехнологию. Версия 1.0 [Электронный ресурс] : электрон. учеб.-метод. комплекс / Т. Г. Волова, Н. А. Войнов, Е. И. Шишацкая, Г. С. Калачева. Элек-трон. дан. (91 Мб). Красноярск : ИПК СФУ, 2008. (Номер гос. регистрации в ФГУП НТЦ «Информрегистр» 0320802394 от 21.11.2008 г.).
- 11. Волова, Т. Г. Введение в биотехнологию : учеб. пособие / Т. Г. Волова. Красноярск : ИПК СФУ, 2008. 188 с.
- 12. Ганиев, М. М. Химические средства защиты растений / М. М. Ганиев, В. Д. Недорезков. М. : Колос, 2006. 248 с.
- 13. Глик, Б. Молекулярная биотехнология: принципы и применение = *Molecular Biotechnology*. Principles and Applications of Recombinant DNA: перевод с английского / Б. Глик, Д. Пастернак; под ред. Н. К. Янковский. М.: Мир, 2002. 589 с.
- 14. Градусов, А. В. Биомониторинг почвы / А. В. Градусов, Ф. К. Алимова, Н. Г. Захарова. Казань : КГУ, 2009. 47 с.
- 15. Сазыкин Ю.О., Орехов С.Н., Чакалева И.И. Биотехнология. М., 2006.
- 16. Егорова Т.А., Клунова С.М., Живухина Е.А. Основы биотехнологии. М. 2006.
- 17. Волова Т.Г. Биотехнология. Новосибирск, 1999.
- 18. Заядан Б.К. Фототрофные микроорганизмы в экологическом мониторинге и биоремедиации загрязненных водных экосистем Монография.—Алматы, С. 380.
- 19. Алмаганбетов К.Х. Биотехнология, 2007
- 20. Емцев В.Т., Е.Н.. Мишустин., Микробиология, Дрофа, Москва. 2005
- 21. John E.Smith Biotechnology, Cambridge, 2009
- 22. Заядан Б.К., Экологиялық биотехнология. Оқу құралы. Алматы, «Қазақ университеті», 2014 ж. 316 б.
- 23. Гайсина Л.А., Фазлутдинова А.И., Кабиров Р.Р. Современные методы выделения и культивирования водорослей. Учебное пособие. Уфа. Изд-во БГПУ. 2008. 152
- 24. Геннис Р. Биомембраны: Молекулярная структура и функции/пер. с англ. М.: Мир, 1997. 624 с.
- 25. Биологические мембраны: Методы/ пер. с англ., под ред. Финдлея Дж.Б., Эванза У.Г. М.: Мир, 1990. С. 196-250.
- 26. Нолтинг Б. Новейшие методы исследования биосистем. М. Техносфера, 2005. 254 с.
- 27. Остерман Л. А. Методы исследования белков и нуклеиновых кислот. М.: МЦНМО, 2002. 248 с.
- 28. Булычев А.А., Вехотуров В.Н., Гуляев Б.А. и соавт. Современные методы биофизических исследований. М. Высшая школа. 1988. 359с.

- 29. Прудникова, С. В. Экологическая роль полигидроксиалканоатов: закономерности биоразрушения в природной среде и взаимодействия с микроорганизмами: монография / С. В. Прудникова, Т. Г. Волова / Красноярск : Красноярский писатель, 2012.
- 30. Рябов, И. Н. Радиоэкология рыб водоемов в зоне влияния аварии на Чернобыльской АЭС. / Рябов И.Н. М.: Тов-во научных изданий КМК, 2004, 215 с.
- 31. Современные проблемы и методы биотехнологии : учеб.-метод. комплекс по дисциплине / сост. Т. Г. Волова. Красноярск : ИПК СФУ, 2009. (Современные проблемы и методы биотехнологии : УМКД № 1323-2008 / рук. творч. коллектива Т. Г. Волова).
- 32. Штильман, М. И. Полимеры медико-биологического назначения / М. И. Штильман // М.: ИКЦ «Академкнига», 2006 399 с.
- 33. Evans, G.G. and Furlong J. Environmental Biotechnology: Theory and Application / Evans, G.G. and Furlong J. John Wiley & Sons. 2011. 290 p.

Дополнительная литература:

- 1. Наумова, Р. П. Экологическая биотехнология / Р. П. Наумова, С. К. Зарипова. Казань : Унипресс, 2002. 253 с.
- 2. Николаев М. И., Киселёв Г. Ю., Бубенчиков А. А. Возможность применения биотоплива на территории россии и омской области // Современная наука и практика, №4. -2015.-71-76.
- 3. Гельфанд Е.Д. Новые разработки по производству жидких биотоплив. 2012.
- 4. Марков С.А. Биоводород: возможное использование водорослей и бактерий для получения молекулярного водорода // Альтернат . энерг. и экол. 2007. 45, № 1. С. 30-35.
- 5. Евтушенков А. Н. Введение в биотехнологию: курс лекций/ А. Н. Евтушенков, Ю. К. Фомичев. Мн.: БГУ, 2004., 1998.
- 6. А. Остерман. Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. М., Наука, 1981.
- 7. Безбородов А.М. <u>Ферментативные процессы в биотехнологии</u> 2008. М. 335 с.
- 8. Бергквист П., Харди К., Оудега Б. и соавт. Плазмиды. Методы. М. Мир. 1989. 267с.
- 9. Эванс У., Море Д.Д., Брайтман Э. Биологические мембраны. Методы. М. Мир. 1990. 424с.
- 10. Калашникова Е.А., Кочиева Е.З., Миронова О.Ю. Практикум по сельскохозяйственно» биотехнологии. М. :Колосс, 2006. 144 с.
- 11. Сингер М., Берг П. Гены и геномы: В 2 т. М.: Мир, 1998.
- 12. Г.Стент, Р.Кэлиндар. Молекулярная генетика. М. Мир, 1981.
- 13. Дж. Уотсон. Молекулярная биология гена. М., Мир, 1979.
- 14. Генная инженерия (под ред. Акад. А.А.Баева). Молекулярная биология, т. 123, 4.1, М.,

ВИНИТИ, 1977.

- 15. М. Пташне. Переключение генов. Регуляция генной активности и фаг λ. М., Мир, 1988.
- 16. Г. Мейнелл. Бактериальные плазмиды. М., Мир, 1976.
- 17. Л.А. Остерман. Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. М., Наука, 1981.
- 18. Алимова, Ф. К. Промышленное применение грибов рода *Trichoderma* / Ф. К. Алимова. Казань : УНИПРЕСС ДАС, 2006. 268 с.
- 19. Биологические средства защиты растений. Технологии их изготовления и применения. /Под ред. В. А. Павлюшина, К.Е. Воронина. СПб.: ВИЗР, 2005. 360 с.
- 20. Биотехнология. Принципы и применения. Biotechnology Principles and Applications : перевод с английского / под ред. : И. Д. Хиггинс, Д. Бест, Д. Джонс. М. : Мир, 1988. 477 с.

Критерий оценки знаний по образовательной программе «8D051 — Биотехнология окружающей среды», PhD докторантура

Оценка по буквенной системе	Цифровой эквивалент баллов	%-ное содержание	Оценка по традиционной системе
A	4,0	95-100	Отлично
A-	3,67	90-94	
B+	3,33	85-89	Хорошо
В	3,0	80-84	
B-	2,67	75-79	
C+	2,33	70-74	
С	2,0	65-69	Удовлетворительно
C-	1,67	60-64	
D+	1,33	55-59	
D-	1,0	50-54	
F	0	0-49	Неудовлетворительно

«А» отлично – глубокое знание теоретических и практических знаний по направлениям биотехнологии окурающей среды; знание по современным методам использующихся в области биотехнологии окурающей среды; понимание сути и взаимосвязи рассматриваемых биотехнологических процессов; твердое знание основных положений смежных дисциплин биотехнологии; правильные, логически последовательные, полные и конкретные ответы на все вопросы экзаменационного билета и дополнительные вопросы членов экзаменационной комиссии.

«В», «С+» хорошо – достаточно полное знание теоретических и практических знаний по направлениям биотехнологии окурающей среды; полное знание по современным методам использующихся в области биотехнологии окурающей среды; понимание сути и взаимосвязи рассматриваемых биотехнологических процессов; правильные,

последовательные, конкретные ответы на поставленные вопросы при свободном устранении замечаний по отдельным, частным аспектам ответов.

«С» «**D**» удовлетворительно — неполное знание теоретических и практических знаний по направлениям биотехнологии окурающей среды и понимание основных вопросов программы; неконкретные, без грубых ошибок ответы на поставленные вопросы при устранении неточностей и ошибок при наводящих вопросах экзаменаторов.

«**F**» **неудовлетворительно**— неправильный ответ хотя бы на один из основных вопросов: грубые ошибки в ответе, непонимание сути излагаемых проблем; неуверенные и неточные ответы на дополнительные вопросы.